
Chapter 8

Integration Using Chebyshev Polynomials

In this chapter we show how Chebyshev polynomials and some of their funda-
mental properties can be made to play an important part in two key techniques
of numerical integration.

• Gaussian quadrature estimates an integral by combining values of the
integrand at zeros of orthogonal polynomials. We consider the special
case of Gauss–Chebyshev quadrature, where particularly simple proce-
dures follow for suitably weighted integrands.

• One can approximately integrate a function by expanding it in a series
and then integrating a partial sum of the series. We show that, for
Chebyshev expansions, this process — essentially the Clenshaw–Curtis
method — is readily analysed and again provides a natural procedure
for appropriately weighted integrands.

Although this could be viewed as an ‘applications’ chapter, which in an
introductory sense it certainly is, our aim here is primarily to derive further
basic properties of Chebyshev polynomials.

8.1 Indefinite integration with Chebyshev series

If we wish to approximate the indefinite integral

h(X) =
∫ X

−1

w(x)f(x) dx,

where −1 < X ≤ 1, it may be possible to do so by approximating f(x) on
[−1, 1] by an nth degree polynomial fn(x) and integrating w(x)fn(x) between
−1 and X , giving the approximation

h(X) � hn(X) =
∫ X

−1

w(x)fn(x) dx. (8.1)

Suppose, in particular, that the weight w(x) is one of the four functions

w(x) =
1√
1− x2

, 1,
1√
1− x

,
1√
1 + x

, (8.2)

and that we take fn(x) as the partial sum of the expansion of f(x) in Cheb-
yshev polynomials of the corresponding one of the four kinds

Pk(x) = Tk(x), Uk(x), Vk(x), Wk(x). (8.3)
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Then we can use the fact that (excluding the case where Pk(x) = Tk(x) with
k = 0) ∫ X

−1

w(x)Pk(x) dx = Ck(X)Qk(X)− Ck(−1)Qk(−1)

where
Qk(X) = Uk−1(X), Tk+1(X), Wk(X), Vk(X) (8.4a)

and

Ck(X) = −
√
1−X2

k
,

1
k + 1

, 2
√
1−X

k + 1
2

, −2
√
1 +X

k + 1
2

, (8.4b)

respectively. (Note that Ck(−1) = 0 in the first and fourth cases.) This
follows immediately from the fact that if x = cos θ then we have

d
dx
sin kθ = −k cos kθ

sin θ
,

d
dx
cos(k + 1)θ =

(k + 1) sin(k + 1)θ
sin θ

,

d
dx
sin(k + 1

2 )θ = − (k +
1
2 ) cos(k +

1
2 )θ

sin θ
,

d
dx
cos(k + 1

2 )θ =
(k + 1

2 ) sin(k +
1
2 )θ

sin θ
.

In the excluded case, we use

d
dx

θ = − 1
sin θ

to give
∫ X

−1

1√
1− x2

T0(x) dx = arccos(−1)− arccosX = π − arccosX.

Thus, for each of the weight functions (8.2) we are able to integrate the
weighted polynomial and obtain the approximation hn(X) explicitly. Suppose
that

fn(x) =
n∑′

k=0

akTk(x) [Pk = Tk] or
n∑

k=0

akPk(x) [Pk = Uk, Vk, Wk]. (8.5)

Then in the first case

hn(X) =
n∑′

k=0

ak

∫ X

−1

w(x)Tk(x) dx =

= 1
2a0(π − arccosX)−

n∑
k=1

ak

√
1−X2

k
Uk−1(X), (8.6)
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while in the second, third and fourth cases

hn(X) =
n∑

k=0

ak

∫ X

−1

w(x)Pk(x) dx =
n∑

k=0

ak [Ck(x)Qk(x)]
X
−1 . (8.7)

The above procedure is a very reliable one, as the following theorem
demonstrates.

Theorem 8.1 If f(x) is L2-integrable with respect to one of the weights w(x),
as defined by (8.2), and hn(X) is defined by (8.6) or (8.7) as appropriate, if
Qk(X) and Ck(X) are defined by (8.4), and if ak are the exact coefficients
of the expansion of f(x) in Chebyshev polynomials of the corresponding kind,
then hn(X) converges uniformly to h(X) on [−1, 1].

Proof: The idea of the proof is the same in all four cases. We give details of the
second case here, and leave the others as exercises (Problems 1 and 2).

For Pk = Uk, w = 1,

hn(X) =

∫ X

−1

fn(x) dx

=

∫ X

−1

n∑
k=0

ak sin(k + 1)θ dθ.

Thus the integrand is the partial Fourier sine series expansion of sin θf(cos θ), which
converges in L2 and hence in L1 (Theorems 5.2 and 5.5).

Now

‖h − hn‖∞ = max
X

∣∣∣∣
∫ X

−1

{f(x)− fn(x)}dx
∣∣∣∣

≤ max
X

∫ X

−1

|f(x)− fn(x)| dx

=

∫ 1

−1

|f(x)− fn(x)| dx

=

∫ π

0

∣∣∣∣∣sin θ f(cos θ)−
n∑

k=0

ak sin(k + 1)θ

∣∣∣∣∣ dθ
→ 0, n → ∞.

Hence hn converges uniformly to h. ••
The coefficients ak in (8.5) have been assumed to be exactly equal to the

relevant Chebyshev series coefficients. In practice, we most often approximate
these by the corresponding coefficients in a Chebyshev interpolation polyno-
mial (see Chapter 6) — effectively evaluating the integral that defines ak by
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the trapezoidal rule (see Section 6.2). In some circumstances, we may need
to calculate the Chebyshev coefficients more accurately than this.

The method followed above is equivalent to methods well known in the
literature. For the first choice (Pk = Tk) the method is that of Clenshaw &
Curtis (1960) and for the second choice (Pk = Uk) that of Filippi (1964).

The analysis of Section 8.1 is taken mainly from Mason & Elliott (1995,
and related papers).

8.2 Gauss–Chebyshev quadrature

Suppose that we now wish to calculate a definite integral of f(x) with weight
w(x), namely

I =
∫ b

a

f(x)w(x) dx. (8.8)

Suppose also that I is to be approximated in the form

I �
n∑

k=1

Akf(xk) (8.9)

where Ak are certain coefficients and {xk} are certain abscissae in [a, b] (all
to be determined). The idea of Gauss quadrature is to find that formula (8.9)
that gives an exact result for all polynomials of as high a degree as possible.

If Jn−1f(x) is the polynomial of degree n − 1 which interpolates f(x) in
any n distinct points x1, . . . , xn, then

Jn−1f(x) =
n∑

k=1

f(xk)�k(x) (8.10)

where �k is the Lagrange polynomial (as in (6.5))

�k(x) =
n∏

r=1
r �=k

(
x− xr

xk − xr

)
(8.11)

The polynomial Jn−1f(x) has the integral

In =
∫ b

a

Jn−1f(x)w(x) dx

=
n∑

k=1

f(xk)
∫ b

a

w(x)�k(x) dx

=
n∑

k=1

Akf(xk)
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provided that the coefficients Ak are chosen to be

Ak =
∫ b

a

w(x)�k(x) dx. (8.12)

With any n distinct abscissae, therefore, and with this choice (8.12) of coef-
ficients, the formula (8.9) certainly gives an exact result whenever f(x) is a
polynomial of degree n− 1 or less. We can improve on this degree, however,
by a suitable choice of abscissae.

Notice too that, for general abscissae, there is no control over the signs
and magnitudes of the coefficients Ak, so that evaluation of the formula (8.9)
may involve heavy cancellation between large terms of opposite signs, and
consequent large rounding error. When we choose the abscissae to maximise
the degree of exactness, however, it can be shown that this problem ceases to
arise.

Theorem 8.2 If xk (k = 1, . . . , n) are the n zeros of φn(x), and {φk : k =
0, 1, 2, . . .} is the system of polynomials, φk having the exact degree k, orthog-
onal with respect to w(x) on [a, b], then (8.9) with coefficients (8.12) gives an
exact result whenever f(x) is a polynomial of degree 2n−1 or less. Moreover,
all the coefficients Ak are positive in this case.

Proof: Since φn(x) is a polynomial exactly of degree n, any polynomial f(x) of
degree 2n − 1 can be written (using long division by φn) in the form

f(x) = φn(x)Q(x) + Jn−1f(x)

where Q(x) and Jn−1f(x) are polynomials each of degree at most n − 1. Then∫ b

a

f(x)w(x) dx =

∫ b

a

φn(x)Q(x)w(x)dx+

∫ b

a

Jn−1f(x)w(x) dx. (8.13)

Now φn(x) is orthogonal to all polynomials of degree less than n, so that the
first integral on the right-hand side of (8.13) vanishes. Thus∫ b

a

f(x)w(x) dx =

∫ b

a

Jn−1f(x)w(x) dx

=

n∑
k=1

AkJn−1f(xk)

since the coefficients have been chosen to give an exact result for polynomials of
degree less than n. But now

f(xk) = φn(xk)Q(xk) + Jn−1f(xk) = Jn−1f(xk),

since xk is a zero of φn(x). Hence∫ b

a

f(x)w(x) dx =

n∑
k=1

Akf(xk),
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and so (8.9) gives an exact result for f(x), as required.

To show that the coefficients Ak are positive, we need only notice that �k(x)
2 is

a polynomial of degree 2n − 2, and is therefore integrated exactly, so that

Ak ≡
n∑

j=1

Aj�k(xj)
2 =

∫ b

a

�k(x)
2w(x) dx > 0

for each k. ••
Thus we can expect to obtain very accurate integrals with the formula

(8.9), and the formula should be numerically stable.

When the interval [a, b] is [−1, 1] and the orthogonal polynomials φn(x)
are one of the four kinds of Chebyshev polynomials, then the weight function
w(x) is (1 − x2)−

1
2 , (1 − x2)

1
2 , (1 + x)

1
2 (1 − x)−

1
2 or (1 − x)

1
2 (1 + x)−

1
2 and

the zeros xk are known explicitly. It remains to determine the coefficients Ak,
which we may do by making use of the following lemma.

Lemma 8.3 ∫ π

0

cosnθ
cos θ − cosφ dθ = π

sinnφ
sinφ

,

∫ π

0

sinnθ sin θ
cos θ − cosφ dθ = −π cosnφ,

for any φ in [0, π], n = 1, 2, 3, . . ..

(We have stated this lemma in terms of the ‘Cauchy principal value’ in-
tegral

∫ · · · dθ since, if we allow φ to take an arbitrary value, the integrands
have a non-integrable singularity at θ = φ. However, when we come to apply
the lemma in this chapter, θ = φ will always turn out to be a zero of the
numerator, so that the singularity will in fact be removable and the principal
value integrals will be equivalent to integrals in the ordinary sense.)

Proof: The lemma can be proved by induction on n, provided that we first establish
the n = 0 case of the first result∫ π

0

1

cos θ − cos φ dθ = 0.

We may do this as follows. Since cos θ is an even function, we have∫ π

0

1

cos θ − cos φ dθ =

= 1
2

∫ π

−π

1

cos θ − cos φ dθ

=

∫ π

−π

eiθ dθ

(eiθ − eiφ)(eiθ − e−iφ)
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=

∫
|z|=1

−i dz
(z − eiφ)(z − e−iφ)

=
−i

eiφ − e−iφ

[∫
|z|=1

dz

z − eiφ −
∫
|z|=1

dz

z − e−iφ

]

=
−1
2 sinφ

[iπ − iπ] = 0.

We leave the subsequent induction as an exercise (Problem 3). ••
The evaluation of Ak can now be carried out.

Theorem 8.4 In the Gauss–Chebyshev formula

∫ 1

−1

f(x)w(x) dx �
n∑

k=1

Akf(xk), (8.14)

where {xk} are the n zeros of φn(x), the coefficients Ak are as follows:

1. For w(x) = (1 − x2)−
1
2 , φn(x) = Tn(x):

Ak =
π

n
.

2. For w(x) = (1 − x2)
1
2 , φn(x) = Un(x):

Ak =
π

n+ 1
(1− x2

k).

3. For w(x) = (1 − x)−
1
2 (1 + x)

1
2 , φn(x) = Vn(x):

Ak =
π

n+ 1
2

(1 + xk).

4. For w(x) = (1 − x)
1
2 (1 + x)−

1
2 , φn(x) =Wn(x):

Ak =
π

n+ 1
2

(1− xk).

Proof: We prove case 1 and leave case 2 as an exercise (Problem 4). We shall
prove cases 3 and 4 a little later.

In case 1, writing

xk = cos θk = cos
(k − 1

2
)π

n
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for the zeros of Tn(x),

Ak =

∫ 1

−1

Tn(x)

(x − xk) n Un−1(xk)

dx√
1− x2

=

∫ π

0

cosnθ sin θk

(cos θ − cos θk) n sin nθk
dθ

=
π

n
,

using Corollary 6.4A and Lemma 8.3. ••
Case 1 above is particularly convenient to use, since all weights are equal

and the formula (8.9) can thus be evaluated with just n−1 additions and one
multiplication.

Example 8.1: To illustrate the exactness of (8.9) for polynomials of degree≤ 2n−1,
consider n = 4 and f(x) = x2. Then

T4(x) = 8x
4 − 8x2 + 1

has zeros x1, . . . , x4 with

x2
1 = x2

4 =
2 +

√
2

4
, x2

2 = x2
3 =

2−√
2

4
.

Hence ∫ 1

−1

x2

√
1− x2

dx � π

4

∑
k

x2
k =

π

4
2

(
2 +

√
2

4
+
2−√

2

4

)
=

π

2

which is the exact value of the integral, as we expect. (See Problem 6 for a more

challenging example.)

Cases 3 and 4 of Theorem 8.4, namely the Chebyshev polynomials of the
third and fourth kinds, require a little more care. We first establish a lemma
corresponding to Lemma 8.3.

Lemma 8.5

1. ∫ π

0

cos(n+ 1
2 )θ

cos θ − cosφ cos
1
2θ dθ =

π

2
sin(n+ 1

2 )φ
sin 1

2φ
.

2. ∫ π

0

sin(n+ 1
2 )θ

cos θ − cosφ sin
1
2θ dθ = −π

2
cos(n+ 1

2 )φ
sin 1

2φ
.
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Proof: (of the Lemma) From the first equation of Lemma 8.3, if we replace cos θ
by x and cosφ by y, ∫ 1

−1

Tn(x)

x − y

dx√
1− x2

= πUn−1(y). (8.15)

Writing x = 2u2 − 1, y = 2v2 − 1, where u = cos 1
2
θ, v = cos 1

2
φ,

∫ 1

−1

(
1 + x

1− x

) 1
2 Vn(x)

x − y
dx =

∫ 1

0

2u√
1− u2

T2n+1(u)

u2 − v2
du

= 1
2

∫ 1

−1

T2n+1(u)

(
1

u+ v
+

1

u − v

)
du√
1− u2

=

∫ 1

−1

T2n+1(u)

u − v

du√
1− u2

= πU2n(v), by (8.15).

Rewriting this in terms of θ and φ, we get

∫ π

0

1

sin 1
2
θ

cos(n+ 1
2
)θ

cos θ − cos φ sin θ dθ = π
sin(2n+ 1) 1

2
φ

sin 1
2
φ

, (8.16)

and this proves part 1 of the Lemma.

Part 2 may be proved similarly, starting from the second equation of Lemma 8.3,
which gives ∫ 1

−1

(1− x2)
1
2

Un−1(x)

x − y
dx = πTn(y),

and making similar substitutions. ••
Proof: (of Theorem 8.4, case 3) Here

Ak =

∫ 1

−1

(
1 + x

1− x

) 1
2 ∏

r �=k

(
x − xr

xk − xr

)
dx

=

∫ 1

−1

(
1 + x

1− x

) 1
2 Vn(x)

(x − xk)V ′
n(xk)

=

∫ π

0

1

sin 1
2
θ

cos(n+ 1
2
)θ cos 1

2
θk sin θk sin θ

(cos θ − cos θk) (n+
1
2
) sin(n+ 1

2
)θk

dθ

=
2π

n+ 1
2

cos2 1
2
θk, by (8.16)

=
π

n+ 1
2

(1 + xk).

Thus case 3 is proved. Case 4 follows, on replacing x by −x. ••
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Example 8.2: To illustrate this case, consider, for example, f(x) = x2 and n = 2
for case 3, so that

I =

∫ 1

−1

(
1 + x

1− x

) 1
2

x2 dx.

Now V2(x) = 4x
2 − 2x − 1 has zeros x1, x2 =

1
4
(1±√

5), with x2
1, x2

2 =
1
8
(3±√

5).
Hence

I � 2π

5
[(1 + x1)x

2
1 + (1 + x2)x

2
2]

=
2π

5
[ 1
4
(5 +

√
5) 1

8
(3 +

√
5) + 1

4
(5−

√
5) 1

8
(3−

√
5)]

= 1
2
π.

This is exact, as we can verify:

I =

∫ π

0

cos 1
2
θ

sin 1
2
θ
(cos θ)2 sin θ dθ =

∫ π

0

1
2
(1 + cos θ)(1 + cos 2θ) dθ = 1

2
π.

The Gauss–Chebyshev quadrature formulae are the only Gauss formulae
whose nodes xk and weights Ak (given by Theorem 8.4) can be written down
explicitly.

8.3 Quadrature methods of Clenshaw–Curtis type

8.3.1 Introduction

The Gauss–Chebyshev quadrature method of Section 8.2 is based on the con-
tinuous orthogonality properties of the Chebyshev polynomials. However, as
we showed in Section 4.6, the four kinds of polynomials also have discrete
orthogonality properties, and it is this kind of property that was exploited in
the original quadrature method of Clenshaw & Curtis (1960). Their method
has been developed in a considerable literature of papers by many authors
(Piessens & Branders 1983, Adam 1987, Adam & Nobile 1991); a particularly
nice presentation is given by Sloan & Smith (1978), who provide a version
based on a general weight function together with a calculation of error esti-
mates. Our treatment here is based on Sloan and Smith’s formulation and
techniques, which we can extend to all four kinds of Chebyshev polynomials.

The basic idea is to replace the integrand by an interpolating polynomial,
and then to integrate this between the required limits. Suppose that we wish
to determine the integral

I(f) :=
∫ 1

−1

w(x)f(x) dx; (8.17)
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then we replace f(x) by the polynomial Jnf(x) of degree n which interpolates
f in abscissae {xk : k = 1, . . . , n+1}, and hence we obtain the approximation

In(f) :=
∫ 1

−1

w(x)Jnf(x) dx (8.18)

to evaluate, either exactly or approximately. So far, this only repeats what
we have said earlier. However, if Chebyshev polynomial abscissae are adopted
as interpolation points then, as we saw in Section 6.3, discrete orthogonal-
ity properties lead to very economical interpolation formulae, expressing the
polynomial Jnf(x) in forms which can readily be integrated — in many cases
exactly.

There are a few important cases in which Gauss–Chebyshev and Clenshaw–
Curtis quadrature lead to the same formulae, although they differ in general.

8.3.2 First-kind formulae

Suppose that

Jnf(x) =
n∑

j=0

bjTj(x) (8.19)

interpolates f(x) in the zeros {xk} of Tn+1(x). Then, using the discrete
orthogonality results (4.40) and (4.42), we have

dij :=
n+1∑
k=1

Ti(xk)Tj(xk) = 0, i �= j, i, j ≤ n (8.20a)

and

dii =
{
(n+ 1), i = 0,
1
2 (n+ 1), i �= 0. (8.20b)

Hence

n+1∑
k=1

f(xk)Ti(xk) =
n+1∑
k=1

Jnf(xk)Ti(xk) =
n∑

j=0

bj

n+1∑
k=1

Ti(xk)Tj(xk) = bidii

and so

bi =
1
dii

n+1∑
k=1

f(xk)Ti(xk). (8.21)

From (8.18)

In(f) =
n∑

j=0

bjaj , (8.22)
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where

aj =
∫ 1

−1

w(x)Tj(x) dx =
∫ π

0

w(cos θ) cos jθ sin θ dθ. (8.23)

Formulae (8.21)–(8.23) give the quadrature rule

In(f) =
n+1∑
k=1

wkf(xk), (8.24a)

wk =
n∑

j=0

aj

djj
Tj(xk) =

n∑′

j=0

2aj

n+ 1
Tj(xk). (8.24b)

Hence In is readily determined, provided that the integrals (8.23) defining aj

are straightforward to calculate.

• For the specific weighting
w(x) = (1 − x2)−

1
2 (8.25)

we have

aj =
∫ 1

−1

(1− x2)−
1
2 Tj(x) dx =

∫ π

0

cos jθ dθ =
{

π, j = 0,
0, j > 0, (8.26)

giving
wk =

a0

d00
T0(xk) =

π

n+ 1
.

Hence ∫ 1

−1

f(x)
dx√
1− x2

� In(f) =
π

n+ 1

n+1∑
k=1

f(xk). (8.27)

Thus we get the first-kind Gauss–Chebyshev formula of Theorem 8.4.

An alternative Clenshaw–Curtis formula may be obtained by defining
Jnf(x) to be the polynomial interpolating the values of f(x) at the abscissae

yk = cos
kπ

n
, k = 0, . . . , n,

which are the zeros of (1 − x2)Un−1(x). In this case we use the discrete
orthogonality results (4.45) and (4.46) to give us

dij :=
n∑′′

k=0

Ti(yk)Tj(yk) = 0, i �= j (8.28a)

and

dii =
{

n, i = 0, i = n,
1
2n, 0 < i < n.

(8.28b)
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We readily deduce, in place of (8.19), that

Jnf(x) =
n∑

j=0

bjTj(x) (8.29)

where in this case

bi =
1
dii

n∑′′

k=0

f(yk)Ti(yk), (8.30)

and that

In(f) =
n∑

j=0

bjaj

where aj are given by the same formula (8.23) as before. This gives us the
rule

In(f) =
n∑

k=0

wkf(yk) (8.31a)

wk =
n∑

j=0

aj

djj
Tj(yk) =

n∑′′

j=0

2aj

n
Tj(yk). (8.31b)

• For w(x) = (1 − x2)−
1
2 , this reduces to the formula

∫ 1

−1

f(x)
dx√
1− x2

� In(f) = πb0 =
π

n

n∑′′

j=0

f(yk). (8.32)

This is nearly equivalent to the second-kind Gauss–Chebyshev formula

of Theorem 8.4, applied to the function
f(x)
1− x2

, except that account

is taken of the values of f(x) at the end points x = ±1. This may
better reflect the inverse-square-root singularities of the integrand at
these points.

8.3.3 Second-kind formulae

It is clear that the key to the development of a Clenshaw–Curtis integration
method is the finding of a discrete orthogonality formula. In fact, there exist
at least sixteen such formulae, listed in Problem 14 of Chapter 4, some of
which are covered in Section 4.6.

An example of a second-kind discrete orthogonality formula, given by
(4.50) and (4.51), is

dij =
n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk) =

{
1
2 (n+ 2), i = j ≤ n,
0, i �= j,

(8.33)
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where {yk} are the zeros of Un+1(x):

yk = cos
kπ

n+ 2
, k = 1, . . . , n+ 1.

To make use of this, we again approximate the required integral I(f) of
(8.17) by the integral In(f) of the form (8.18), but now interpolating f(x) by
a function of the form

Jnf(x) = (1− x2)
1
2

n∑
j=0

bjUj(x); (8.34)

that is, a polynomial weighted by (1 − x2)
1
2 . There is thus an implicit as-

sumption that f(x) vanishes at x = ±1, and that it possibly has a square-root
singularity at these points (though this is not essential).

Now

bi =
2

n+ 2

n+1∑
k=1

(1− y2
k)

1
2 f(yk)Ui(yk) (8.35)

from (8.33). Integrating (8.18) gives us

In(f) =
n∑

j=0

bjaj (8.36)

where

aj =
∫ 1

−1

w(x)(1 − x2)
1
2Uj(x) dx =

∫ π

0

w(cos θ) sin(j + 1)θ sin θ dθ. (8.37)

This gives the rule

In(f) =
n+1∑
k=1

wkf(yk), (8.38a)

wk = (1− y2
k)

1
2

n∑
j=0

2aj

n+ 2
Uj(yk). (8.38b)

• In the special case where w(x) = 1,

aj =
∫ 1

−1

(1− x2)
1
2Uj(x) dx =

∫ π

0

sin(j +1)θ sin θ dθ =
{

1
2π, j = 0,
0, j > 0.

Hence, from (8.36), (8.37),

∫ 1

−1

f(x) dx = In(f) =
π

n+ 2

n+1∑
k=1

(1− y2
k)

1
2 f(yk). (8.39)
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This is equivalent to the second-kind Gauss–Chebyshev formula of The-
orem 8.4, applied to the function

f(x)√
1− x2

.

8.3.4 Third-kind formulae

A third-kind formula is obtained from the orthogonality formula

dij =
n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk) =
{

n+ 3
2 , i = j,

0, i �= j,
(8.40)

where {xk} are the zeros of Vn+1(x). (See Problem 14 of Chapter 4.)

In this case, we choose

Jnf(x) = (1 + x)
1
2

n∑
j=0

bjVj(x), (8.41)

a polynomial weighted by (1 + x)
1
2 (implicitly supposing that f(−1) = 0).

Now, from (8.39), we can show that

bi =
1

n+ 3
2

n+1∑
k=1

(1 + xk)
1
2 f(xk)Vi(xk). (8.42)

Integrating (8.18) gives us again

In(f) =
n∑

j=0

bjaj

where now

aj =
∫ 1

−1

w(x)(1 + x)
1
2Vj(x) dx. (8.43)

So we have the rule

In(f) =
n+1∑
k=1

wkf(xk) (8.44a)

wk = (1 + xk)
1
2

n∑
j=0

2aj

2n+ 3
Vj(xk). (8.44b)

• For the special case in which
w(x) = (1− x)−

1
2 , (8.45)
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then

aj =
∫ 1

−1

(1 + x)Vj(x)
dx

(1 − x2)
1
2
=

=
∫ π

0

2 cos(j + 1
2 )θ cos

1
2θ dθ =

{
π, j = 0,
0, j > 0.

Hence

∫ 1

−1

f(x)
dx√
1− x

= In(f) =
2π

2n+ 3

n+1∑
k=1

(1 + xk)
1
2 f(xk). (8.46)

This is equivalent to the third-kind Gauss–Chebyshev formula of Theo-
rem 8.4, applied to the function

f(x)√
1 + x

.

8.3.5 General remark on methods of Clenshaw–Curtis type

There are effectively two types of quadrature formula considered above.

• For special choices of weight function w(x), such that all but one of
the Chebyshev transforms bi vanish, the formula involves only a single
summation — such as (8.27) — and is identical or very similar to a
Gauss–Chebyshev formula.

• For a more general weight function, provided that the integral (8.23),
(8.37) or (8.43) defining aj can be exactly evaluated by some means, we
obtain a formula involving a double summation — such as (8.24) — one
set of summations to compute the weights wk and a final summation to
evaluate the integral.

8.4 Error estimation for Clenshaw–Curtis methods

There are a number of papers on error estimation in Clenshaw–Curtis methods
(Fraser & Wilson 1966, O’Hara & Smith 1968, Smith 1982, Favati et al. 1993,
for instance). However, we emphasise here the approach of Sloan & Smith
(1980), which seems to be particularly robust, depends on interesting proper-
ties of Chebyshev polynomials, and is readily extendible to cover all four kinds
of Chebyshev polynomial and the plethora of abscissae that were discussed in
Section 8.3.
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8.4.1 First-kind polynomials

Suppose that the function f(x) being approximated is continuous and of
bounded variation, and therefore has a uniformly convergent first-kind Cheb-
yshev expansion

f(x) ≈
∞∑′

j=0

βjTj(x). (8.47)

Then the error in the integration method (8.31) (based on {yk}) is

En(f) := I(f)− In(f)

= (I − In)


 ∞∑

j=n+1

βjTj(x)




=
∞∑

j=n+1

βj {I(Tj)− In(Tj)}. (8.48)

Now

I(Tj) =
∫ 1

−1

w(x)Tj(x) dx = aj (8.49)

and (Jn again denoting the operator interpolating in the points {yk})

In(Tj) =
∫ 1

−1

w(x)JnTj(x) dx. (8.50)

But
JnTj(yk) = Tj(yk) = Tj′(yk) (8.51)

where (as shown in Table 8.1) j′ = j′(n, j) is an integer in the range 0 ≤ j′ ≤ n
defined by

j′(n, j) = j, 0 ≤ j ≤ n
j′(n, j) = 2n− j, n ≤ j ≤ 2n

j′(n, 2n+ j) = j′(n, j)


 . (8.52)

This follows immediately from the observation that, j, k and n being integers,

Tj(yk) = cos
jkπ

n
= cos

(2n± j)kπ
n

= T2n±j(yk).

Thus the interpolation operator Jn has the so-called aliasing1 effect of
identifying any Chebyshev polynomial Tj with a polynomial Tj′ of degree at
most n, and it follows from (8.51) that, identically,

JnTj(x) = Tj′(x), (8.53)
1See Section 6.3.1.
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Table 8.1: Tj′(x) interpolates Tj(x) in the zeros of (1− x2)Un−1(x)

j = 0 1 2 → n− 1 n
2n 2n− 1 2n− 2 ← n+ 1 n
2n 2n+ 1 2n+ 2 → 3n− 1 3n
...

...
...

...
...

j′ = 0 1 2 · · · n− 1 n

and
In(Tj) = In(Tj′) = I(Tj′) = aj′ . (8.54)

Therefore

En(f) =
∞∑

j=n+1

βj(aj − aj′). (8.55)

Sloan & Smith (1980) assume that the weight function w(x) is smooth
enough for aj (8.23) to be neglected for j > 2n and that the integrand f(x)
itself is smooth enough for βj (8.47) to be neglected beyond j = 3n. Then
(8.55) yields, referring to Table 8.1,

|En(f)| ≤ |an+1 − an−1| |βn+1|+ |an+2 − an−2| |βn+2|+ · · ·
· · ·+ |a2n − a0| |β2n|+ |a1| |β2n+1|+ · · ·+ |an| |β3n| .

If we then assume a geometric decay in the βjs, say

|βn+j | ≤ cnr
j
n

for some cn, rn with rn < 1, then

|En(f)| ≤ cn{|an+1 − an−1| rn+ · · ·+ |a2n − a0| rn
n+ |a1| rn+1

n + · · ·+ |an| r2n
n }.

(8.56)

If we change the notation slightly, replacing bj by bnj , the additional sub-
script being introduced to show the dependence on n,

bnj =
2
π

n∑′′

k=0

f(yk)Tj(yk),

it is clear that bnj is an approximation to

βj =
2
π

∫ 1

−1

f(x)Tj(x)
dx√
1− x2

,

which becomes increasingly accurate with increasing n. Hence, a succession
of values of bnj (for various values of n) may be used to estimate βj . (For the
case j = n, βj would be approximated by 1

2bnj .)
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Sloan and Smith’s ‘second method’ is based on obtaining estimates of rn

and cn, and then using them in (8.56). Essentially, rn is estimated from ratios
of coefficients and cn from the coefficients themselves. One algorithm, which
takes account of the observed fact that odd and even coefficients tend to have
somewhat different behaviours, and which uses three or four coefficients to
construct each estimate, is as follows:

• Compute

z1 = max{ 1
2 |bnn| , |bn,n−2| , |bn,n−4| , |bn,n−6|},

z2 = max{|bn,n−1| , |bn,n−3| , |bn,n−5| .

• If z1 > z2 then if |bn,n−6| > · · · > 1
2 |bnn| then

r2n = max
{ 1

2 |bnn|
|bn,n−2| ,

|bn,n−2|
|bn,n−4| ,

|bn,n−4|
|bn,n−6|

}
, (8.57)

otherwise rn = 1.

• If z1 < z2 then if |bn,n−5| > · · · > |bn,n−1| then

r2n = max
{ |bn,n−1|
|bn,n−3| ,

|bn,n−3|
|bn,n−5|

}
, (8.58)

otherwise rn = 1.

• Set
cn = max{ 1

2 |bnn| , |bn,n−1| rn, . . . , |bn,n−6| r6n}. (8.59)

8.4.2 Fitting an exponential curve

A similar but somewhat neater procedure for estimating cn and rn is to fit
the coefficients

bnn, bn,n−1, bn,n−2, . . . , bn,n−k

(or the even or odd subsequences of them) by the sequence

cnr
n
n , cnr

n−1
n , cnr

n−2
n , . . . , cnr

n−k
n .

This is in effect a discrete approximation of a function g(x) = bnx by

cn(rn)x ≡ eA+Bx

at x = n, n− 1, n− 2, . . . , n− k, where A = ln cn and B = ln rn.

Then
g(x) = eA+Bx + e(x)
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where e(x) is the error. Hence

ln g(x) + ln(1− e(x)/g(x)) = A+Bx

so that, to the first order of approximation,

ln g(x)− e(x)/g(x) ≈ A+ Bx

and
g(x) ln g(x)− e(x) ≈ g(x)(A+Bx).

Hence a discrete least-squares fit of ln g(x) by A+Bx, weighted throughout
by g(x), can be expected to give a good model of the least-squares fitting of
g(x) by eA+Bx.

This is an example of an algorithm for approximation by a ‘function of a
linear form’ — more general discussion of such algorithms is given in Mason
& Upton (1989).

8.4.3 Other abscissae and polynomials

Analogous procedures to those of Section 8.4.1 can be found for all four kinds
of Chebyshev polynomials, and for all sets of abscissae that provide discrete
orthogonality.

For example:

• For first-kind polynomials on the zeros {xk} of Tn+1(x) (8.24), equations
(8.47)–(8.50) still hold, but now

JnTj(xk) = Tj(xk) = ±Tj′(xk)

where (as in Table 8.2)

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, j + 2n+ 2) = j′(n, j) (with changed sign)



.

(8.60)
This follows immediately from

Tj(xk) =




cos j′(k− 1
2 )π

n+1 (0 ≤ j ≤ n)

0 (j = n+ 1)

cos (2n+2−j′)(k− 1
2 )π

n+1 = − cos j′(k− 1
2 )π

n+1 (n+ 2 ≤ j ≤ 2n+ 2)

cos (2n+2+j′)(k− 1
2 )π

n+1 = − cos j′(k− 1
2 )π

n+1 (2n+ 3 ≤ j ≤ 3n+ 2)
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Table 8.2: ±Tj′(x) interpolating Tj(x) in the zeros of Tn+1(x)

j = 0 1 → n n+ 1 n+ 2 → 2n+ 1 2n+ 2
4n+ 4 4n+ 3 ← 3n+ 4 3n+ 3 3n+ 2 ← 2n+ 3 2n+ 2
4n+ 4 4n+ 5 → 5n+ 4 5n+ 5 5n+ 6 → 6n+ 5 6n+ 6
...

...
...

...
...

...
...

j′ = 0 1 · · · n n+ 1 n · · · 1 0
sign + + · · · + 0 − · · · − −

We now deduce that

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n+2|+ |a1| |β2n+3|+ · · ·
· · ·+ |an+1| |β3n+3| . (8.61)

• For second-kind polynomials on the zeros of Un+1 (8.38), we require an
expansion

f(x) =
∞∑

j=0

βjUj(x)

so that βj is approximated by bj from (8.35).

Then

En(f) =
∞∑

j=n+1

βj [I(Uj)− In(Uj)]

where now

I(Uj) =
∫ 1

−1

w(x)(1 − x2)1/2Uj(x) dx = aj (8.62)

and

In(Uj) =
∫ 1

−1

w(x)(1 − x2)1/2JnUj(x) dx. (8.63)

If {yk} are the zeros of Un+1(x), then

JnUj(yk) = Uj(yk) = ±Uj′(yk)
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where (taking U−1 ≡ 0)

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, 2n+ 3) = −1 (with zero coefficient)

j′(n, j + 2n+ 4) = j′(n, j) (with unchanged sign)



.

(8.64)
This is shown in Table 8.3, and follows from

yk = cos θk = cos
kπ

n+ 2
, k = 1, . . . , n+ 1.

For

Uj(yk) sin θk = sin(j + 1)θk (j = 0, . . . , n)

= sin(2n+ 2− j′ + 1)θk = − sin(j′ + 1)θk

= −Uj′(yk) sin θk (j′ = n+ 1, . . .)

and
sin(j + 2n+ 4 + 1)θk = sin(j + 1)θk.

Table 8.3: ±Uj′(x) interpolating Uj(x) in the zeros of Un+1(x)

j = 0 → n n+ 1 n+ 2 → 2n+ 2 2n+ 3
2n+ 4 → 3n+ 4 3n+ 5 3n+ 6 → 4n+ 6 4n+ 7
4n+ 8 → 5n+ 8 5n+ 9 5n+ 10 → 6n+ 10 6n+ 11
...

...
...

...
...

...
j′ = 0 · · · n n+ 1 n · · · 0 −1
sign + · · · + 0 − · · · − 0

From (8.62) and (8.63):

En(f) =
∞∑

j=n+1

βj(aj − aj′)

and

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n+2|+ |a0| |β2n+4|+ · · ·
· · ·+ |an+1| |β3n+5| . (8.65)
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• For third-kind polynomials on the zeros of Vn+1 (8.44), we use an ex-
pansion

f(x) = (1 + x)1/2
∞∑

j=0

βjVj(x). (8.66)

Then

En(f) =
∞∑

j=n+1

βj [I(Vj)− In(Vj)]

where

I(Vj) =
∫ 1

−1

w(x)(1 + x)1/2Vj(x) dx = aj (8.67)

and

In(Vj) =
∫ 1

−1

w(x)(1 + x)1/2JnVj(x) dx. (8.68)

Choose {xk} as the zeros of Vn+1(x). Then

JnVj(xk) = Vj(xk) = ±Vj′(xk)

where

j′(n, j) = j, 0 ≤ j ≤ n (with + sign)
j′(n, n+ 1) = n+ 1 (with zero coefficient)

j′(n, j) = 2n+ 2− j, n+ 2 ≤ j ≤ 2n+ 2 (− sign)
j′(n, j + 2n+ 3) = j′(n, j) (with changed sign)



.

(8.69)
This is shown in Table 8.4, and follows from

xk = cos θk = cos
(k − 1

2 )π
n+ 3

2

,

giving

cos 1
2θkVj(xk) = cos

(j + 1
2 )(k − 1

2 )π
n+ 3

2

= cos
(2n+ 2− j′ + 1

2 )(k − 1
2 )π

n+ 3
2

= cos
{2(n+ 3

2 )− (j′ + 1
2 )}(k − 1

2 )π
n+ 3

2

= − cos (j
′ + 1

2 )(k − 1
2 )π

n+ 3
2

and

cos
(j + 2n+ 3 + 1

2 )(k − 1
2 )π

n+ 3
2

= − cos (j +
1
2 )(k − 1

2 )π
n+ 3

2

.
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Table 8.4: ±Vj′ (x) interpolating Vj(x) in the zeros of Vn+1(x)

j = 0 → n n+ 1 n+ 2 → 2n+ 2
4n+ 5 ← 3n+ 5 3n+ 4 3n+ 3 ← 2n+ 3
4n+ 6 → 5n+ 6 5n+ 7 5n+ 8 → 6n+ 8
...

...
...

...
...

j′ = 0 · · · n n+ 1 n · · · 0
sign + · · · + 0 − · · · −

From (8.67) and (8.68):

En(f) =
∞∑

j=n+1

βj(aj − aj′)

and

|En(f)| ≤ |an+1| |βn+1|+ |an+2 + an| |βn+2|+ · · ·
· · ·+ |a2n+2 + a0| |β2n|+ |a0| |β2n+3|+ · · ·
· · ·+ |an| |β3n+3| . (8.70)

We note that there are only very slight differences between Tables 8.2, 8.3
and 8.4 and between the corresponding error bounds (8.61), (8.65) and (8.70).

8.5 Some other work on Clenshaw–Curtis methods

There is now a significant amount of literature on Clenshaw–Curtis methods,
built up over about forty years, from which we shall draw attention to a
selection of items.

Of particular interest are applications to Bessel function integrals (Piessens
& Branders 1983), oscillatory integrals (Adam 1987), Fourier transforms of
singular functions (Piessens & Branders 1992), Cauchy principal-value inte-
grals (Hasegawa & Torii 1991) and Volterra integral equations (Evans et al.
1981).

Among contributions specific to error bounds and error estimates are the
early work of Chawla (1968), Locher (1969) and O’Hara & Smith (1968),
together with more recent work of Smith (1982) and Favati et al. (1993)—the
last being concerned with analytic functions.

Product integration (including error estimation) has been well studied, in
particular by Sloan & Smith (1978, 1980, 1982) and Smith & Paget (1992).

There has been an important extension of the Clenshaw–Curtis method
to integration over a d-dimensional hypercube, by Novak & Ritter (1996).
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8.6 Problems for Chapter 8

1. If w = (1 − x2)−
1
2 and Pk(x) = Tk(x) in Section 8.1, show that

‖h− hn‖∞ =
∫ 1

−1

(1− x2)−
1
2

∣∣∣∣∣f(x)−
n∑′

k=0

akTk(x)

∣∣∣∣∣ dx

=
∫ π

0

∣∣∣∣∣f(cos θ)−
n∑′

k=0

ak cos kθ

∣∣∣∣∣ dθ.

By considering the Fourier cosine series expansion of f(cos θ), deduce
Theorem 8.1 for the first case.

2. If w = [12 (1 − x)]−
1
2 and Pk(x) = Vk(x) in Section 8.1, show that

‖h− hn‖∞ =
∫ 1

−1

[12 (1− x)]−
1
2

∣∣∣∣∣f(x)−
n∑

k=0

akVk(x)

∣∣∣∣∣ dx

= 2
∫ π

0

∣∣∣∣∣cos 1
2θ f(cos θ)−

n∑
k=0

ak cos(k + 1
2 )θ

∣∣∣∣∣ dθ

= 4
∫ π/2

0

∣∣∣∣∣cosφ f(cos 2φ)−
n∑

k=0

ak cos(2k + 1)φ

∣∣∣∣∣ dφ.

By considering the Fourier cosine series expansion of cosφ f(cos 2φ)
(which is odd about φ = 1

2π), deduce Theorem 8.1 for the third case.

3. Complete the proof of Lemma 8.3, by performing an induction on n for
the pair of formulae together.

4. Use Lemma 8.3 to prove the second part of Theorem 8.4. Verify that
this quadrature formula is exact for n = 3 in the case of the integral∫ 1

−1

√
1− x2 x2 dx.

5. Prove in detail the second part of Lemma 8.5.

6. Verify the exactness of Gauss–Chebyshev quadrature using first-kind
polynomials, by testing it for n = 4 and f(x) = x6, f(x) = x7.

7. Verify the Gauss–Chebyshev rule for fourth-kind polynomials, by testing
it for n = 1 and f(x) = 1, f(x) = x.

8. Verify that there is a Gauss–Chebyshev quadrature rule based on the
zeros of (1 − x2)Un−1(x) and the polynomials Tn(x), and derive a for-
mula. (This type of formula, which uses both end points, is called a
Lobatto rule.) When would this rule be useful?
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9. Show that there is a Gauss–Chebyshev quadrature rule based on the
zeros of (1 + x)Vn(x) and the polynomials Tn(x), and derive a formula.
(This type of formula, which uses one end point, is called a Radau rule.)
When would this rule be useful?
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